

# **Materials Challenges for ITER**

## - Current Status and Future Activities

Vladimir Barabash and the ITER International Team, A. Peacock<sup>2</sup>, S. Fabritsiev<sup>3</sup>, G. Kalinin<sup>4</sup>, S. Zinkle<sup>5</sup>, A. Rowcliffe<sup>5</sup>, J.-W. Rensman<sup>6</sup>, A.A. Tavassoli<sup>7</sup>, P.J. Karditsas<sup>8</sup>, F. Gillemot<sup>9</sup>, M. Akiba<sup>10</sup>

> 1 ITER International Team, 85748 Garching, Germany
> 2 EFDA Close Support Unit, 85748 Garching, Germany
> 3 D.V. Efremov Scientific Research Institute, 196641 St. Petersburg, Russia 4 ENES, P.O. Box 788, 101000 Moscow, Russia
> 5 ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6138, USA
> 6 NRG, P.O. Box 25, 1755 ZG Petten, The Netherlands 7 CEA/Saclay, 91191 Gif sur Yvette Cedex, France
> 8 EURATOM/UKAEA Fusion Association, Abingdon, Oxon, OX14 3DB, UK
> 9 AEKI Atomic Research Institute, 1121 Budapest, Hungary
> 10 JAEA, Naka-machi, Naka-gun, Ibaraki-ken 311-0193, Japan

Twelfth International Conference on Fusion Reactor Materials December 4-9, 2005 Santo Barbaro, California, USA

## Outline





Summary



## ITER is international fusion energy research project.

#### **ITER goals:**

- ✓ Show scientific and technological feasibility of fusion energy for peaceful purposes
- ✓ Integrate and test all essential fusion power reactor technologies and components
- ✓ Demonstrate safety and environmental acceptability of fusion

ITER activities were started in 1992, Final Design Report was issued in 2001.

Extensive negotiations about construction agreement, selection of site, sharing between Parties, etc. are being carried out during 2001-2005.

Finally, in June 2005, the ITER construction site was selected – Cadarache, France.



## **ITER Design Parameters (FDR 2001)**



| Total Fusion Power              | 500 (700) MW                                             |  |
|---------------------------------|----------------------------------------------------------|--|
| Q=Fusion<br>Power/Heating power | 10                                                       |  |
| Plasma major radius             | 6.2 m                                                    |  |
| Plasma minor radius             | 2.0 m                                                    |  |
| Toroidal field, 6.2 m           | 5.3 T                                                    |  |
| Plasma current                  | 15 (17.4) MA                                             |  |
| Plasma Volume                   | 837 m <sup>3</sup>                                       |  |
| Plasma Surface                  | 678 m <sup>2</sup>                                       |  |
| Neutron flux                    | Av. 0.57 MW/m <sup>2</sup><br>Max. 0.8 MW/m <sup>2</sup> |  |
| Neutron fluence                 | Av. 0.3MW*a/m <sup>2</sup><br>Max 0.5MW*a/m <sup>2</sup> |  |
| Heat flux, First<br>Wall        | 0.2 - 0.5 MW/m <sup>2</sup>                              |  |
| Heat flux, Divertor             | 10 (20) MW/m <sup>2</sup>                                |  |
| Number of pulses                | ~ 30.000                                                 |  |
| Pulse length                    | ~ 400 s                                                  |  |

## ITER is the first tokamak, with significant neutron fluence.



Selection of materials for the ITER components was a challenging task, due to unique operational conditions, e.g.:

- Magnet operation at 4K, high stresses;
- In-vessel components combined effect of n-irradiation, heat flux, hydrogen environment, mechanical loads, complicated design with different type of joints;

Experience from current tokamaks has been taken into account, (plasma facing, diagnostics materials, etc.).

Knowledge from fission neutron irradiation programs was used.

However, in many cases, the choice was not simple, because for a number of materials the existing data base was not sufficient.

## Selection of Materials – General strategy



The material choice for ITER has been orientated toward industrially available materials while taking account of physical and mechanical properties, maintainability, reliability, corrosion performance and safety requirements at the ITER operational conditions.

## The ITER materials categories:

- Standard materials with established manufacturing technologies, (e.g. steel . 304, steel 316L(N), alloy 718, W).
- Standard materials, which require some modifications, such as more stringent • limits on the alloying elements, etc. (e.g. steel EK1, JJ1, CuCrZr, etc.).
- Recently developed materials (e.g. CFC). •

Materials were selected based on the evaluation of the impact of manufacturing technologies on materials properties and assessment of their performance at the ITER operational conditions.

#### These selection and justification were supported by the results of the dedicated world-wide R&D program. 6



#### ITER Materials Properties Handbook (MPH-Magnet, Cryo, VV&IC):

 A collection of design-relevant data on physical and mechanical properties of a large variety of the ITER relevant materials.

#### **ITER Materials Assessment Report (MAR):**

 A description of the rationales for the selection of the specific materials grades for VV and Invessel components and assessment of the materials performance.

#### Appendix A of the ITER Addendum to the RCC-MR:

- Design data for materials for the Vacuum Vessel.

#### Appendix A of the ITER Structural Design Criteria (SDC-IC):

- Design data for in-vessel components (including neutron irradiation).

#### Safety Report:

- Collection of safety relevant properties.

#### **ITER Materials Properties Database (MPDB):**

Collection of raw experimental data - base for further recommendations

## These documents justify the selection and materials performance.



## **Materials Activity in current stage**



## **Multidisciplinary task:**

- Preparing of the procurement specifications for materials for various components (in accordance with construction schedule);
  - Discussion with Industries for implementing the ITER requirements
  - Discussion of the possible deviations
  - Schedule for materials procurements
- Consolidation of the materials properties database and modifications of the ITER Materials Documents;
  - Assessment of the new data from R&D program
  - Preparing of recommendations based on Design Codes requirements
  - Completion of MPH and App. A for VV Code, In-vessel SDC and Magnet SDC
- Carrying out the R&D in some still critical areas:
  - Further optimisation and simplification of design and manufacturing route
  - Generating of new data needed for the completion of the design evaluation

## **Selection of materials for ITER components**



|                 |                                                                         | _                                 |                                        |                                                                                                                        |  |  |  |
|-----------------|-------------------------------------------------------------------------|-----------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| No.             | WBS Element                                                             | -Ma                               | -Magnet - Toperation- 4-77 K           |                                                                                                                        |  |  |  |
| 1.              | TOKAMAK BASIC MACHINE                                                   |                                   | Magnet – i operation- 4-77 K           |                                                                                                                        |  |  |  |
| 1.1             | TOROIDAL FIELD (TF) COILS SYSTEM                                        | EK1 or                            | UI forged sections TI                  | Components<br>Conjunctus<br>Conjunctus<br>Components<br>Components<br>Components<br>Components<br>Components           |  |  |  |
| 1.2             | POLOIDAL FIELD (PF) COILS SYSTEM                                        |                                   | Vacuum vessel and In-vessel materials: |                                                                                                                        |  |  |  |
| 1.3             | CENTRAL SOLENOID (CS) SYSTEM                                            |                                   |                                        |                                                                                                                        |  |  |  |
| 1.5             | VACUUM VESSEL                                                           |                                   | - Structural                           |                                                                                                                        |  |  |  |
| 1.6             | BLANKET SYSTEM                                                          |                                   | - plasma facing                        |                                                                                                                        |  |  |  |
| 1.7             | DIVERTOR                                                                | 1.5                               | VACUUM                                 | VESSEL 13                                                                                                              |  |  |  |
| 2.              | TOKAMAK ANCILLARIES AND CRYOSTAT                                        | 16                                |                                        | SYSTEM                                                                                                                 |  |  |  |
| 2.3             | REMOTE HANDLING (RH) EQUIPMENT                                          | 1.0                               |                                        |                                                                                                                        |  |  |  |
| 2.4             | CRYOSTAT                                                                | 1.7                               | DIVERTO                                | R                                                                                                                      |  |  |  |
| 2.6             | COOLING WATER SYSTEM                                                    | 5.1                               | ION CYCL                               | HEATING (IC H&CD) SYSTEM                                                                                               |  |  |  |
| 2.7             | THERMAL SHIELDS                                                         | 5.2                               | ELECTRO                                | N CYCL. HEATING (EC H&CD) SYSTEM                                                                                       |  |  |  |
| 3.              | TOKAMAK FLUIDS                                                          | 53                                |                                        | AL BEAM HEATING (NB H&CD) SYSTEM                                                                                       |  |  |  |
| 4.              | POWER SUPPLIES - COMMAND CONTROL                                        | J.J NEUTRAL                       |                                        |                                                                                                                        |  |  |  |
| 5.              | PORT INTERFACING SYSTEMS                                                | 5.4 LOWER H                       |                                        | IYBRID HEATING (LH H&CD) SYSTEM                                                                                        |  |  |  |
| 5.1             | ION CYCL. HEATING (IC H&CD) SYSTEM                                      | 5.5 DIAGNOSTICS                   |                                        |                                                                                                                        |  |  |  |
| 5.2             | ELECTRON CYCL. HEATING (EC H&CD) SYSTEM                                 |                                   | SS CPORY OID                           |                                                                                                                        |  |  |  |
| 5.3             | NEUTRAL BEAM HEATING (NB H&CD) SYSTEM                                   | Ag coating                        |                                        | Coating, 5 $\mu$ m (emissivity)                                                                                        |  |  |  |
| 5.4             | LOWER HYBRID HEATING (LH H&CD) SYSTEM                                   | region)                           |                                        | r doped shica (core)/r doped (clad)/Al jacket (JA F-<br>doped)                                                         |  |  |  |
| <b>J.</b> 5     | DIAGNOSTICS                                                             | (IR region)<br>Mirrors/Reflectors |                                        | Pure silica, F doped (core)/F doped (clad)/Al jacket<br>First mirrors: Metal (Cu. W. Mo, SS, Al), LIDAR Single         |  |  |  |
| 5.6             | TEST BLANKETS                                                           |                                   |                                        | coated (Rh/V), Dielectric mirrors:(HfO <sub>2</sub> /SiO <sub>2</sub> ,                                                |  |  |  |
|                 |                                                                         |                                   |                                        | $10_2/S10_2$ ), LSMS: (Mo/S1, W/B <sub>4</sub> C and W/C), X- ray<br>crystals: (Ge, Si, SiO <sub>2</sub> , Graphite) 9 |  |  |  |
|                 |                                                                         | Magn                              | etic coils                             | MI cables                                                                                                              |  |  |  |
| V.Barabash et d | al., ITER Materials, ICFRM-12, December 4 - 9, 2005, Santa Barbara, USA | Bolon                             | neters                                 | Mica substrate, Au meander                                                                                             |  |  |  |

## **Selection of materials – Vacuum Vessel**



- Safety Important Component => licensing in France
- Code RCC-MR + ITER addendum
- Main structural material 316L(N)-IG is the Code gualified and main specifications are available
- Other structural materials: steel 304, steel grade 660, Alloy 718 are also in the Code
- Only functional materials (borated steels, etc.) are not in the Code.



#### Materials for Vacuum Vessel:

Austenitic steel 316L(N)-IG Borated steels 304B7 and 304B4 shielding plates Ferritic steel 430 Steel 660 Steel 304 Alloy 718 Weld filler materials XM-19 Steel 316 Pure Cu

plates, forgings, rods plates fasteners, forgings plates, beams bolts electrodes, wire bolts for shielding bolts (B8M) clad on VV

#### Materials for Vacuum Vessel support:

Steel 304 Alloy 718 Steel 660 NiAl bronze PTFE Neoprene rubber

plates, forgings, rod bolts forgings, bolts pins for sliding elements



## **Selection of materials – Vacuum Vessel**

#### **Chemical composition of steels**

| 31<br>ASME<br>min | 6L<br>E A240<br>max    | controlled<br>RCC-M                                                                                 | d nitrogen<br>IR 2002                                                                                                                                 | ITER                                                                                                                                                                                                                                                                                         | grade                                                  |  |
|-------------------|------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| 31<br>ASME<br>min | 6L<br>E A240<br>max    | controllee<br>RCC-M                                                                                 | I nitrogen<br>IR 2002                                                                                                                                 | ITER                                                                                                                                                                                                                                                                                         | grade                                                  |  |
| ASME<br>min       | E A240<br>max          | RCC-N                                                                                               | IR 2002                                                                                                                                               |                                                                                                                                                                                                                                                                                              |                                                        |  |
| min               | max                    |                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |                                                        |  |
|                   |                        | min                                                                                                 | max                                                                                                                                                   | min                                                                                                                                                                                                                                                                                          | max                                                    |  |
|                   | 0.03                   |                                                                                                     | 0.030                                                                                                                                                 |                                                                                                                                                                                                                                                                                              | 0.03                                                   |  |
|                   | 2.00                   | 1.60                                                                                                | 2.00                                                                                                                                                  | 1.60                                                                                                                                                                                                                                                                                         | 2.00                                                   |  |
|                   | 0.045                  |                                                                                                     | 0.50                                                                                                                                                  |                                                                                                                                                                                                                                                                                              | 0.50                                                   |  |
|                   | 0.030                  |                                                                                                     | 0.035                                                                                                                                                 |                                                                                                                                                                                                                                                                                              | 0.025                                                  |  |
|                   | 0.75                   |                                                                                                     | 0.025                                                                                                                                                 |                                                                                                                                                                                                                                                                                              | 0.01                                                   |  |
| 16.00             | 18.00                  | 17.00                                                                                               | 18.00                                                                                                                                                 | 17.00                                                                                                                                                                                                                                                                                        | 18.00                                                  |  |
| 10.00             | 14.00                  | 12.00                                                                                               | 12.50                                                                                                                                                 | 12.00                                                                                                                                                                                                                                                                                        | 12.50                                                  |  |
| 2.00              | 3.00                   | 2.30                                                                                                | 2.70                                                                                                                                                  | 2.30                                                                                                                                                                                                                                                                                         | 2.70                                                   |  |
|                   |                        |                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                              | 0.15*                                                  |  |
|                   |                        |                                                                                                     | 1.00                                                                                                                                                  |                                                                                                                                                                                                                                                                                              | 0.30                                                   |  |
|                   |                        |                                                                                                     | 0.0020                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 0.002                                                  |  |
|                   |                        |                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                              | (0.001)**                                              |  |
|                   |                        |                                                                                                     | 0.25                                                                                                                                                  |                                                                                                                                                                                                                                                                                              | 0.05                                                   |  |
|                   | 0.1                    | 0.060                                                                                               | 0.080                                                                                                                                                 | 0.060                                                                                                                                                                                                                                                                                        | 0.080                                                  |  |
|                   |                        |                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |                                                        |  |
| 11                | 15                     | 14                                                                                                  | 47                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                            | 47                                                     |  |
|                   | 16.00<br>10.00<br>2.00 | 2.00<br>0.045<br>0.030<br>0.75<br>16.00 18.00<br>10.00 14.00<br>2.00 3.00<br>0.1<br>115<br>NI 0.1 E | 2.00   1.60     0.045   0.030     0.75   0.75     16.00   18.00   17.00     10.00   14.00   12.00     2.00   3.00   2.30     0.1   0.060     115   14 | 2.00     1.60     2.00       0.045     0.50       0.030     0.035       0.75     0.025       16.00     18.00     17.00       10.00     14.00     12.00     12.50       2.00     3.00     2.30     2.70       0     1.00     0.0020     0.025       0.1     0.060     0.080       115     147 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |



Nb < 0.1, Ta < 0.01

## *Materials for VV – ongoing activity:*

Complete App. A to ITER Addendum to RCC-MR

- Introduce required additional properties (e.g. fracture toughness) for structural materials
- Introduce properties of functional materials in the ITER Addendum
- Non-metallic materials justification of the properties for licensing
  - Windows, etc.

Properties of welds

- In case of use welds, which are not in Code, – provide the needed justification. Preparation of the Procurement Specifications

- Composition, minimum properties, NDE&QA

## **Selection of materials – In-vessel components**



## **General considerations:**

- Design of structural elements in accordance with the ITER Structural Design Criteria for IC (SDC-IC)
- Design of some elements (Be/Cu, CFC/Cu, Window/Cu etc.) by experiment

## **ITER SDC-IC:**

- Needs reliable and traceable materials data (including neutron irradiation effect)
- Properties of joints (welds, SS/Cu, etc.) have also to be assessed

### ITER MPH includes the justification of recommendations.

#### Properties needed for design analyses:

- Physical (incl. neutron irradiation)
- Tensile properties for design (incl. neutron irradiation) minimum and average
- Design fatigue curves (incl. neutron irradiation)
- Fracture toughness (incl. neutron irradiation)

## Specifications for materials supply:

- Chemical composition,
  - Minimum properties;
  - NDE&QA

- average (+deviation)
- minimum (Δε/2; Nf/20)
- minimum and average

## **Selection of materials – In-vessel components**



| Material             | Material Grade                                                     |             | Components                                                                        |
|----------------------|--------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|
| • Armou              | ir                                                                 |             |                                                                                   |
| Beryllium            | S-65C VHP or equivalent                                            | •           | Armour for first wall and limiter                                                 |
| Tungsten             | Pure W                                                             | •           | Armour for divertor                                                               |
| CFC                  | SEP NB 31 or equivalent                                            | •           | Armour for divertor                                                               |
| Structur             | al                                                                 |             |                                                                                   |
| Austenitic<br>steels | 316L(N)-IG                                                         | •<br>•<br>• | Blanket shield modules<br>Thin walled pipes<br>Cooling manifolds<br>Divertor body |
|                      | 304L, 316L                                                         | •           | Cooling pipes                                                                     |
|                      | XM-19                                                              | •           | Divertor support                                                                  |
| PH steel             | Steel grade 660                                                    | •           | Divertor support                                                                  |
| Cu alloys            | CuCrZr                                                             | •           | PFCs, heating systems,<br>electrical strips, etc.                                 |
|                      | NiAl bronze                                                        | •           | Divertor attachment                                                               |
|                      | CuNiBe                                                             | •           | Support system                                                                    |
|                      | DS Cu                                                              | •           | heating systems,                                                                  |
| Function             | nal                                                                |             |                                                                                   |
| Austenitic<br>steel  | 316                                                                | •           | Fastening components                                                              |
| PH steel             | Steel grade 660                                                    | •           | Fastening components                                                              |
| Ni alloys            | Alloy 718                                                          | •           | Bolts<br>Divertor connections                                                     |
| Ti alloy             | Ti-6Al-4V                                                          | •           | Blanket attachment                                                                |
| Ceramic              | Al <sub>2</sub> O <sub>3</sub> or MgAl <sub>2</sub> O <sub>4</sub> | ٠           | Electrical insulators                                                             |
| Special              |                                                                    | •           | Pure Cu                                                                           |
| materials            |                                                                    | •           | Pure Ni                                                                           |
|                      |                                                                    | •           | Low C iron                                                                        |
|                      |                                                                    | •           | Brazes                                                                            |
|                      |                                                                    | •           | Weld fillers                                                                      |



V.Barabash et al., ITER Materials, ICFRM-12, December 4 - 9, 2005, Santa Barbara, USA

#### V.Barabash et al., ITER Materials, ICFRM-12, December 4 - 9, 2005, Santa Barbara, USA

## Stainless steel 316L(N)-IG

## Welding and joining Different types of steels (diffe

- Un-irradiated data for welds are Code qualified;
- Irradiated data are being reviewed, the behavior is similar to base metal; the same safety margin can be used;
- The properties of joints after HIP (solid and powder) joining technique are adequate.

## Rewelding

ITER recommendation for the reweldability limits, provided by the allowable levels for He production in weld:

- < 1 appm for thick plate welding,
- < 3 appm for thin plate or pipe welding.







## Stainless steel 316L(N)-IG



## Neutron effect:

#### **Tensile properties:**

-Strengthening and loss of ductility (loss of strain hardening)

#### Fatigue:

- no effect on fatigue

#### Fracture toughness:

<sup>-</sup> reduction, but material still ductile









#### **Chemical composition**

| Alloy Designation   | Cu   | Cr        | Zr        | 0         | Other    | 1 |
|---------------------|------|-----------|-----------|-----------|----------|---|
|                     |      |           |           |           | elements |   |
| CuCrZr, RF          | base | 0.4-1.0   | 0.03-0.08 |           | 0.1 max  |   |
| CuCrZr, C18150      | base | 0.5-1.5   | 0.05-0.25 |           |          |   |
| <b>CEN/TS 13388</b> | base | 0.3-1.2   | 0.03-0.3  |           | 0.2      |   |
| CuCrZr ITER Grade   | base | 0.60-0.90 | 0.07-0.15 | 0.002 max | 0.01 max |   |
|                     |      |           |           |           | 0.05 -Cd | 1 |

Reasons for modification of the chemical composition:

- smaller scatter of properties,
- less coarser Cr particles better toughness,
- better radiation resistance is expected,
- welding improved.

## Effect of treatment on properties.

#### Manufacturing treatments:

 $(SA - 980-1000^{\circ}C + water quench, Ageing - 450-500^{\circ}C$ 

- SAA (different cooling rate, etc.)
- SA + cold work + A
- SAA + cold work
- cast CuCrZr + SAA



## CuCrZr alloy



#### Fatigue:

- Seems that fatigue performance is similar for CuCrZr with different treatment

## Creep - fatigue interaction:

- very complicated performance:
  - => Generally there is reduction of
    - lifetime with hold time; => Higher Sy higher fatigue lifetime

## (see presentation of B. Singh, this Conference)



#### V.Barabash et al., ITER Materials, ICFRM-12, December 4 - 9, 2005, Santa Barbara, USA

## CuCrZr alloy

## Neutron effect:

- Tensile properties: loss of ductility (loss of strain hardening): saturation at ~ 0.1-0.5 dpa at T ~ 100-300°C.
- Some improvements of ductility is observed after baking treatment (see Fabritsiev, this Conference)

## Fracture toughness and fatigue:

- effect is small, but data are only up to 0.3 dpa

There is no correlation between loss of ductility at tensile tests and fracture toughness.

#### 500 SEN(B) B=3mm W=4mm [4-6] value of J initiation J<sub>Q</sub> (kJm<sup>-2</sup>) SEN(B) B=3mm W=4mm [7] 0.3 dpa F 400 Polvn, fit (all) Polyn. fit (unirrad.) É 300 S. Tähtinen, MPH 2005 • $\diamond$ 200 $\diamond$ 100 $\diamond$ 0 0 50 200 250 300 350 400 100 150 Temperature (°C)

## Summary for CuCrZr:

- Final characterization after selected heat treatment (s);
- There are some missing data: irradiation creep, fracture toughness and fatigues at high doses;
- Importance of creep-fatigue interaction shall be understood.





## **Alloy 718**







V.Barabash et al., ITER Materials, ICFRM-12, December 4 - 9, 2005, Santa Barbara, USA



Reasons: low elastic modulus and high strength provide high flexibility.

Key issues:

Neutron irradiation embrittlement: - ITER goal ~ 0.1 dpa

Hydrogen environment: - it is well known that H affects properties.

Hydrogen levels up to 150 wppm have moderate effect on toughness, at a test temperature of 150°C. P. Marmy, 2004



However, remaining issues:

- Role of ionizing radiation on possible enhanced hydrogen uptake (MIT launcher, May 2005)
- Fracture toughness and fatigue of irradiated Ti alloy.





## **NiAl bronze**



## NiAl bronze (CuAl10Ni5Fe4):

ASTM B150, C63200 DIN EN 12163/1216

High strength, low friction and spark resistance are the key properties.



## Neutron effect:

#### First data are presented at this Conference.





V. Barabash, S. Fabritisiev, this Conference



## **Compromise:** Plasma Performance $\leftarrow \rightarrow$ Materials Lifetime $\leftarrow \rightarrow$ T retention

- ~ 680m<sup>2</sup> Be first wall
- → low Z compatibility with wide operating range and low T retention
- ~ 50 m<sup>2</sup> CFC Divertor Target
- → No melting under transients (ELMs and Disruptions)
- → Low Z compatibility with wide range of plasma regimes ( $T_{e,div} \sim 1 100 \text{ eV}$ )
- → Large T retention (co-deposition)
- ~ 100m<sup>2</sup> Tungsten Baffle/Dome
- $\rightarrow$  Low Erosion, long Lifetime and low T retention

For PSI issues see:

G. Federici, "Plasma Wall Interactions in ITER", to appear in Physica Scripta. G. Federici, et al., "Plasma material interactions in current tokama and their implications for next step fusion reactors". Nucl. Fusion 41 (2001 )1967.







## SEP NB31, CX-2002U, or equivalent

## Key issues:

#### Properties variation at mass production (ITER needs ~ 10 tons):

- variation of thermal conductivity (SD<sub>RT</sub> < 10 W/mK);

- stable mechanical properties

#### Neutron effect:

- it is well known neutron irradiation affect thermal conductivity, nevertheless the thermal performance is adequate (V.Barabash, ICFRM-11).

#### Thermal erosion at transient loads:

- is being assessed (EFDA+ITER+TRINITI, RF)









## Improving of manufacturing technology is ongoing.

## **Beryllium**

S-65C, Brush Wellman USA, or equivalent grade(s)

## Key issues:

#### Thermal fatigue/thermal shock resistance

- S-65C VHP has the better performance, but others may be also acceptable

#### Neutron effect:

- The behavior of all Be grades with BeO < 1% seems very similar.

- However, the performance of irradiated Be in the irradiated components seems good, based on the results of in-pile tests and test of FW mock-ups after irradiation (see J. Linke, A. Gervash).





Side Crack Propagation Depth (mm)

0 C

800



## **Tungsten**



Pure sintered W is selected Data base for pure W is sufficient.

## Key issues:

#### Thermal fatigue/thermal shock resistance

- Performance of W significantly depends on orientation of grains and production history (plate, rod, recrystallization, etc.)





#### Neutron effect:

- Due to low irradiation temperature (~ 150-500°C, all W grades will be brittle at low dose irradiation
- However, the performance of 'brittle' W in the irradiated components seems good (see M. Roedig, FZJ).









# ITER is ready to be build, however, there is still a list of materials issues to be solved.

- Site adaptation: for safety important components a complete information have to be presented for the licensing needs in France;
- In some areas R&D is on-going with goal to simplify design, reduce cost, increase reliability – materials data for supporting of these designs are needed, e.g.:
  - US propose cast steel for blanket modules need neutron irr. data;
  - RF and China cheaper Be grades need to qualify them;
  - Different technologies used for FW need qualify CuCrZr properties;
  - Etc.
- Need to have all missing data, which could impact the performance of materials in ITER
- Finally we need to provide the recommended data for Ultimate assessment and acceptance of the design.

These issues have to be resolved before the starting of the procurements.

## **Test Blanket Module Program in ITER:**



ITER is considered as a most suitable test-bed for the breeding blanket of next step.

3 equatorial ports are allocated for TBM. Size of port ~1310 x 1760 mm.

Each port could include 2 types of TBM

The first TBMs must be installed in ITER since the start of the operation:

- Finalisation of the design and supporting R&D must be completed soon.
- All modules before installation in ITER must be qualified for licensing in France:

=> sufficient information about materials should be provided.





- The design and technical preparation for the construction of ITER are ready for implementation and inter-government negotiations are nearing to completion.
- The design of the ITER components is supported by the proper and justified materials selection. This is a results of extensive and successful world-wide ITER materials and technological R&D program.
- During construction phase the materials activity will be focused on:
  - Resolving of the urgent remaining issues before starting the procurement of materials,
  - Materials procurement and evaluation of the acceptance of the materials in the final components,
  - Further consolidation of the data, which are needed for the licensing and for justification of the safe and reliable performance of materials during the ITER operation.